LF/LFM - Low Pressure High Flow Assemblies

LF flow rate to 560 lpm, 150 gpm / LFM flow rate to 16875 lpm, 4500 gpm

Applications

Hydraulic and Lubrication oil

Fuel and Fuel oil

Rolling mill oil

Processing liquids

Bulk oil handling - Transfer and clean up

Off-line systems and flushing

Power generation

Primary metals

Mobile flushing systems

Particulate and water removal

Transfer line machining coolants

Large gearbox filtration

High flow Return-line filtration

Features, Benefits, Advantages

Carbon steel construction standard (304 & 316 stainless available).

Duplexing option available for continuous filtration during filter element change-out.

HP106 and HP107 standard element configurations have integral bypass valve (new bypass every time element is changed avoids bypass failure).

Pressure gages are supplied standard for housings up to 250 psi operating (differential indicator is available). Differential pressure indicator is supplied standard for housings with operating pressure 450 psi and higher.

Easy to service swing-lid design with eye nuts assures no lost hardware, hydraulic lift option available.

Marine grade epoxy exterior finish for non-stainless steel assemblies.

Optional element configurations include: 8314 coreless design or industry standard 6 x 18 and 6 x 36 with gasket seals (Must be specified with order).

Vent/bleed port standard in housing cover.

2" drain and cleanout port allows for quick draining and easy access for sump cleanout.

Hy-Pro Dualglass filter element media technology validated per ISO16889 multipass and DFE (modified ISO16889) industry leading multipass testing.

Product Specifications

Max Flow Rate Visc:

150 SUS, 32 cSt

ŀ	₹e	CO	m	me	nd	ed	Se	ries

100 gpm (375 lpm)	LF Single length
150 gpm (560 lpm)	LF Double length
300 gpm (1125 lpm)	2 x LF Double parallel mount
4500 gpm (16875 lpm)	LFM multiple element series (call for sizing assistance)

Operating Pressure Standard 150 psi (10 bar) Available up to 3000 psi (212 bar)

Pressure Indicators

Up to 250 psi Operating	Two visual pressure gages or differential indicator available
450 psi and higher	Differential pressure indicator required

Maximum Temperature Standard 250°F Call for high temperature specs

ASME U & UM Code Requirements

Standard vessels are manufactured to ASME code standards, but not certified. ASME U and UM code certification is available as an option. See table 9 under the Filter Assembly part number guide on page 2 for ordering detail. Please call for price adders when specifying Code certification.

FILTRATION

www.hyprofiltration.com

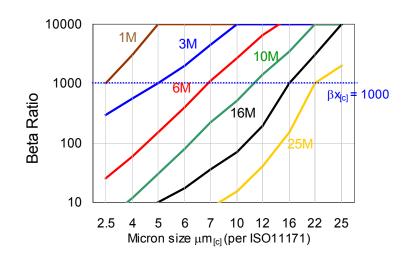
LF.indd 1 10/17/2012 9:23:08 AM

HIGH PERFORMANCE FILTER ELEMENTS - THE HEART OF A FILTER

Dynamic Filter Efficiency (DFE) Testing

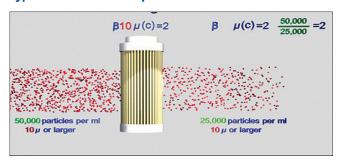
Revolutionary test methods assure that DFE rated elements perform true to rating even under demanding variable flow and vibration conditions. Today's industrial and mobile hydraulic circuits require elements that deliver specified cleanliness under ALL circumstances. Wire mesh supports the media to ensure against cyclical flow fatigue, temperature, and chemical resistance failures possible in filter elements with synthetic support mesh. Contact your distributor or Hy-Pro for more information and published articles on DFE testing.

Media Options

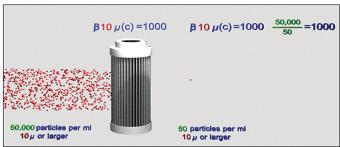

Through extensive testing we have developed media choices to handle any application. Options include G8 Dualglass, Dynafuzz (stainless fiber), and Wire mesh (stainless).

Fluid Compatibility

Petroleum based fluids, water glycol, polyol ester, phosphate ester, high water based fluids and many other synthetics. Contact us for seal material selection assistance.


FILTER MEDIA SPECIFICATIONS

Glass Media Code Filtration Efficiency (Beta Ratio) vs Micron Size



Media	Modia Description			
Code	Media Description			
А	G8 Dualglass high performance media combined with water removal scrim. $\beta x[c] = 1000 (\beta x = 200)$			
М	G8 Dualglass our latest generation of DFE rated, high performance glass media for all hydraulic & lubrication luids. βx[c] = 1000 (βx = 200)			
W	Stainless steel wire mesh media $\beta x[c] = 2 (\beta x = 2)$ nominally rated			

Typical cellulose media performance

Hy-Pro G8 Dualglass media performance

FILTER ELEMENT PERFORMANCE DATA

Elements Tested to ISO quality standards

ISO 2941	Collapse and burst resistance
ISO 2942	Fabrication and Integrity test
ISO 2948	Material compatibility with fluids
ISO 3724	Flow fatigue characteristics
ISO 3968	Pressure drop vs. flow rate
ISO 16889	Multi-pass performance testing

Coreless Filter Element Technology

Hy-Pro coreless elements are featured in the FCL series. The elements are oversized to yield extended element life and handle a wide variety of high viscosity oils. Hy-Pro coreless elements utilize wire mesh pleat support which ensures that the pleats won't collapse or lose integrity.

DIFFERENTIAL PRESSURE GAGES

Differential Pressure Gauges + Switches

Differential pressure gauges with green to red display ensures proper monitoring of filter element condition. DIN connector switch can be added to any pressure gauge.

Available with terminal differential settings, visual green to red and alarm switch, at 22 psid (1.56 bar) and 45psid (3.19 bar).

Sampling Port Isolation Valves Standard

Sample port valves are located on inlet and outlet connections to which many different types of sampling connectors.

LF, LFM FILTER ASSEMBLY SELECTION AND SIZING GUIDELINES

Calculate ∆p coefficient at both operating and cold start viscosity:

	Actual Operating Viscosity (SSU)		Actual S.G.
∆p Coefficient =	150	X	0.86

2. Calculate actual clean filter assembly Δp at both operating and cold start viscosity:

Actual assembly clean Δp = Flow rate x Δp Coefficient x Assembly Δp factor (from sizing table)

3. Sizing Recommendations to optimize performance and permit future flexibility:

- To avoid or minimize bypass during cold start the actual assembly clean ∆p calculation should be repeated for start-up conditions if cold starts are frequent.
- Actual assembly clean ∆p should not exceed 5 psid at normal operating viscosity.
- If suitable assembly size is approaching the upper limit of the recommended flow rate at the desired degree of filtration consider increasing the assembly to the next larger size if a finer degree of filtration might be preferred in the future. This practice allows the future flexibility to enhance fluid cleanliness without compromising clean Δp or filter element life.
- Once a suitable filter assembly size is determined consider increasing the assembly to the next larger size to optimize filter element life and avoid bypass during cold start.
- When using water glycol or other specified synthetics we recommend increasing the filter assembly by 1~2
- High viscosity fluid (ie gear lube ISO 220) will typically display very high viscosity as the temperature drops below 100°F. For such applications avoiding bypass during start-up might not be possible.

LF Single Element Assembly (housing + element) Differential Pressure Factors

Media Code	Port Size	L36, 39 Max flow gpm (lpm)	Length code	∆p factor* (psid/gpm)	∆p factor* (bar/lpm)	Length code	∆p factor* (psid/gpm)	∆p factor* (bar/lpm)
1M		100 (375)		0.059	0.00113		0.047	0.00090
3M		150 (560)		0.050	0.00096		0.042	0.00081
6M		150 (560)		0.048	0.00092		0.041	0.00079
10M	2" Flange, NPT	150 (560)	16, 18	0.046	0.00087	36, 39	0.040	0.00077
16M	1 1 1	200 (750)		0.043	0.00082		0.038	0.00073
25M		200 (750)		0.040	0.00077		0.037	0.00071
**W		300 (1125)		0.037	0.00071		0.035	0.00067
1M		150 (560)		0.047	0.00078		0.034	0.00065
3M		200 (750)		0.038	0.00073		0.030	0.00058
6M		200 (750)		0.036	0.00069		0.029	0.00055
10M	3" Flange, NPT	250 (935)	16, 18	0.034	0.00066	36, 39	0.028	0.00053
16M	141 1	300 (1125)		0.031	0.00060		0.026	0.00050
25M		300 (1125)		0.028	0.00054		0.024	0.00046
**W		300 (1125)		0.025	0.00048		0.022	0.00042

FILTER ASSEMBLY SELECTION AND SIZING GUIDELINES

LFM3 Multi-Element Assembly (housing + element) Differential Pressure Factors

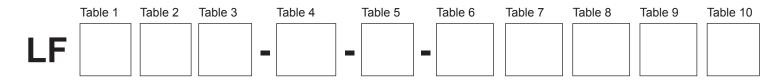
Media Code	Length Code	Max Flow gpm (lpm)	Port Size	∆p Factor* (psid/gpm)	∆p Factor* (bar/lpm)
1M		600 (2250)		0.0081	0.000154
3M		800 (3000)		0.0055	0.000105
6M		900 (3375)		0.0051	0.000098
10M	36, 39	1300 (4875)	4" Flange	0.0045	0.000087
16M		1300 (4875)		0.0041	0.000079
25M		1500 (5625)		0.0035	0.000067
**W		1500 (5625)		0.0027	0.000052
1M		600 (2250)		0.0075	0.000144
3M		800 (3000)		0.005	0.000096
6M		900 (3375)		0.0045	0.000087
10M	36, 39	1300 (4875)	6" Flange	0.0039	0.000058
16M		1300 (4875)		0.0035	0.000067
25M		1500 (5625)		0.0029	0.000059
**W		1500 (5625)		0.0021	0.000041

^{*}Max flow rate and Δp factor assumes v = 150 sus, 32 Centistokes. See Δp viscosity conversion formula for viscosity change.

LFM4 Multi-Element Assembly (housing + element) Differential Pressure Factors

Media Code	Length Code	Max Flow gpm (lpm)	Port Size	∆p Factor* (psid/gpm)	∆p Factor* (bar/lpm)
1M		600 (2250)		0.0067	0.000129
3M		800 (3000)		0.0048	0.000092
6M		1000 (3750)		0.0044	0.000084
10M	36, 39	1300 (4500)	4" Flange	0.0040	0.000077
16M		1400 (5250)		0.0037	0.000071
25M		1500 (5625)		0.0032	0.000061
**W		1500 (5625)		0.0025	0.000048
1M		600 (2250)		0.0062	0.000119
3M		800 (3000)	6" Flange	0.0043	0.000083
6M		900 (3375)		0.0039	0.000075
10M	36, 39	1300 (4875)		0.0034	0.000065
16M		1300 (4875)		0.0031	0.000059
25M		1500 (5625)		0.0026	0.000050
**W		1500 (5625)		0.00207	0.000038

^{*}Max flow rate and Δp factor assumes v = 150 sus, 32 Centistokes. See Δp viscosity conversion formula for viscosity change.



(

(

FILTER ELEMENT PART NUMBER GUIDE

Table 4 Table 5 Table 6 Table 7 **HP10**

Table 1				
Code	Elements per Vessel			
Omit	1 element			
M3+	3 elements			
M4 ⁺	4 elements			
M9+	9 elements			
M14 ⁺	14 elements			
M22 ⁺	22 elements			

^{*}Subject to longer than standard lead times.

Table 4 Code	Element Configuration
5	HP105 coreless series, positiveo-ring seals. Recommended change-out 45 psid (3,2 bar)
6	HP106 element with bypass, 25 psid (1,8 bar) bypass, orings change-out 22 psid (1,5 bar)
7	HP107 element with bypass 50 psid (3,5 bar) bypass, orings change-out 45 psid (3,2 bar)
8	USE HP8314 for element P/N Interchanges with Pall HC8314, NO BYPASS, oring seals, max change-out 45 psid (3,2 bar)

Table 7	Coolo	
Code	Seals	
В	Buna (Nitrile)	
E-WS	EPR (Skydrol fluid apps)	
V	Viton® (Fluoro)	

Viton® is a registered trademark of E. I. du Pont de Nemours and Company or its affiliates.

Table 9	ASME Code				
Code	(Not Required)				
omit	No Code (standard)				
U⁺	U Code				
M ⁺	UM Code				

^{*}Subject to longer than standard lead times

Table 2	Materials				
Code	Materials				
Omit	Epoxy coated steel				
S⁺	304 Stainless steel				
*Subject to longer than standard lead times					

Table 5	Element Length					
Code						
18	Single (LF single element vessel only), element codes 5,6,7 only					
36	Double, element code 5,6,7					
39	Double, element 8 (HP8314)					

Table 6	Filtration Pating					
Code	Filtration Rating					
1M	β2.5 _[c] = 1000 (β1 = 200)					
3M	β5 _[c] = 1000 (β3 = 200)					
6A	$\beta 7_{[c]}$ = 1000 + water removal					
6M	β7 _[c] = 1000 (β6 = 200)					
10A	$\beta 12_{[c]}$ = 1000 + water removal					
10M	$\beta 12_{[c]} = 1000 \ (\beta 12 = 200)$					
16 A	β 17 _[c] = 1000 + water removal					
16 M	β17 _[c] = 1000 (β17 = 200)					
25A	$\beta 22_{[c]} = 1000 + \text{water removal}$					
25M	β22 _[c] = 1000 (β25 = 200)					
25W	25μ nominal wire mesh					
40M	β35 _[c] = 1000 (β40 = 200)					
40W	40μ nominal wire mesh					
74W	74μ nominal wire mesh					
149W	149μ nominal wire mesh					
250W	250μ nominal wire mesh					

Table 10	
Code	Max Operating Pressure
omit	150 psi (standard)
V	250 psi, 17 bar max
W*+	450 psi, 30 bar max
X*+	1000 psi, 66 bar max

^{*}Slip and blind flange bolt arrangement

Table 3	Connections				
Code	Connections				
B2⁺	2" BSPP				
C2⁺	2" SAE Code-61 Flange				
C3+	3" SAE Code-61 Flange				
D2 ⁺	DN50 DIN 2633 Flange				
D3⁺	DN65 DIN 2633 Flange				
D4 ⁺	DN100 DIN 2633 Flange				
D5+*	DN125 DIN 2633 Flange				
D6+*	DN150 DIN 2633 Flange				
D8+*	DN200 DIN 2633 Flange				
D10+*	DN250 DIN 2633 Flange				
F2+	2" ANSI Flange				
F3⁺	3" ANSI Flange				
F4 ⁺	4" ANSI Flange				
F6+*	6" ANSI Flange				
F8+*	8" ANSI Flange				
F10+*	10" ANSI Flange				
F12+*	12" ANSI Flange				
N2	NPT 2"				
N3 ⁺	NPT 3"				
N4 ⁺	NPT 4"				

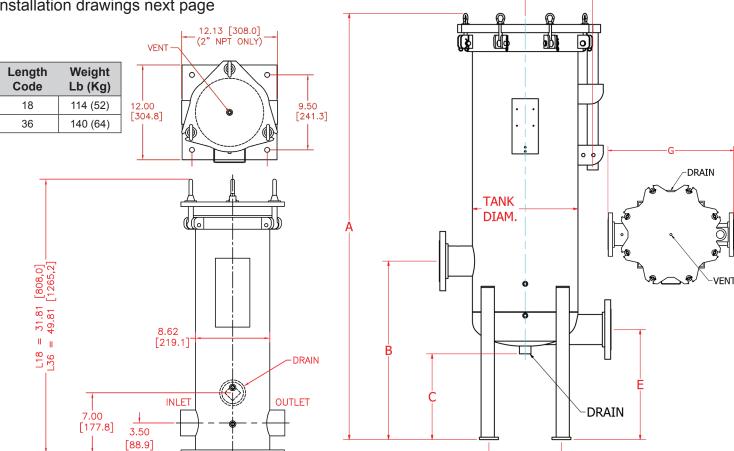

^{*}Subject to longer than standard lead times. *LF single housing only available up to 4" port size.

Table 8	Indicator					
Code						
Х	None (ported, plugged)					
Р	Two pressure gages					
D	22 psid visual ∆p gage, + electric alarm (120V AC)					
E	22 psid visual ∆p gage 45 psid visual ∆p gage, + electric alarm (120V AC)					
F						
G	45 psid visual ∆p gage					
Н	65 psid electrical ∆p gage					
J	65 psid visual ∆p gage					

dimensions change from standard (9 bolts) *Subject to longer than standard lead times

LF - 150 PSI (10 BAR) only 250 PSI (17 BAR), 450 PSI (30 BAR) installation drawings next page

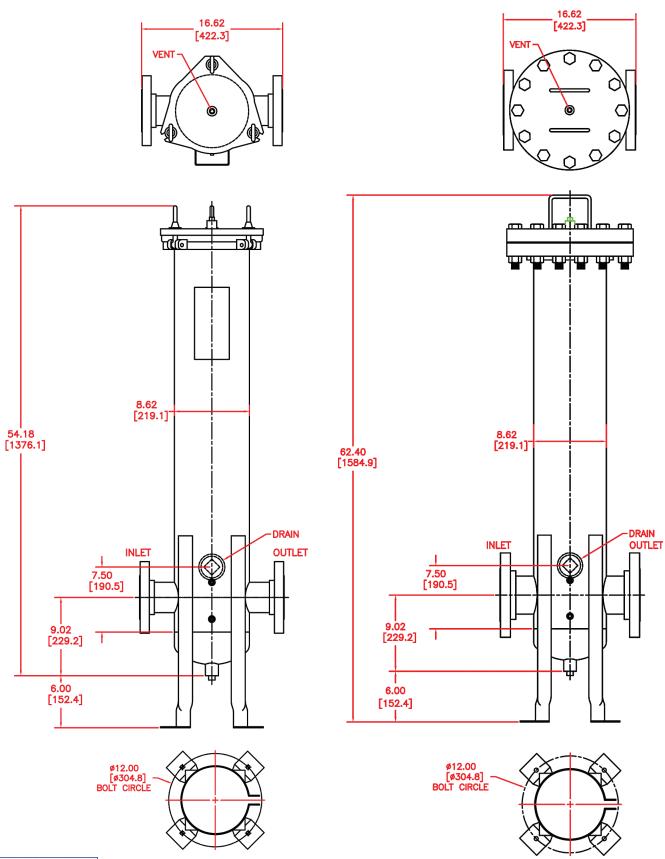
LFM* - up to 450 PSI (30 BAR)

(

								•			
Series	Element Quantity	Tank Diameter	Port Sizes	Est. Weight	Α	В	С	D*	E	F	G*
LFM3	3	16 [406,4]	2	465 Lbs 211 Kg	64.6 [1640.8]	27.0 [470,8]	13.0 [330.2]	11.0 [279.4]	27.1 [688.3]	10.2 [259.1]	26.0 [660.4]
			3		64.6 [1640.8]	27.0 [470,8]	13.0 [330.2]	11.0 [279.4]	27.1 [688.3]	10.2 [259.1]	26.0 [660.4]
			4		64.6 [1640.8]	27.0 [470,8]	13.0 [330.2]	11.0 [279.4]	27.1 [688.3]	10.2 [259.1]	26.0 [660.4]
	4	18 [457,2]	2	550 Lbs 250 Kg	76.7 [1948.2]	17.3 [439.4]	13.3 [337.8]	12.4 [315.0]	35.3 [896.6]	11.2 [284.5]	26.0 [660,4]
LFM4			3		76.7 [1948.2]	17.3 [439.4]	13.3 [337.8]	12.4 [315.0]	35.3 [896.6]	11.2 [284.5]	26.0 [660,4]
			4		76.7 [1948.2]	17.3 [439.4]	13.3 [337.8]	12.4 [315.0]	35.3 [896.6]	11.2 [284.5]	26.0 [660,4]
	9		3	645 Lbs 293 Kg	76.7 [1948.2]	23.8 [604.5]	18.8 [477.5]	16.5 [419.1]	35.3 [896.6]	15.1 [383.5]	37.3 [947.4]
LFM9		24 [609,6]	4		76.7 [1948.2]	23.8 [604.5]	18.8 [477.5]	16.5 [419.1]	35.3 [896.6]	15.1 [383.5]	37.3 [947.4]
			6	200 119	76.7 [1948.2]	23.8 [604.5]	18.8 [477.5]	16.5 [419.1]	35.3 [896.6]	15.1 [383.5]	37.3 [947.4]
	14	30 [762]	3		81.9 [2079,6]	18.5 [470,8]	6.0 [152,4]	24.0 [609,6]	9.0 [228,6]	18.9 [479,6]	38.0 [965,2]
LFM14*			4	710 Lbs 323 Kg	81.9 [2079,6]	18.5 [470,8]	6.0 [152,4]	24.0 [609,6]	9.0 [228,6]	18.9 [479,6]	38.0 [965,2]
			6		81.9 [2079,6]	18.5 [470,8]	6.0 [152,4]	24.0 [609,6]	9.0 [228,6]	18.9 [479,6]	38.0 [965,2]
	22	36 [914,4]	4	900 Lbs 410 Kg	81.9 [2079,6]	24.5 [623,2]	6.0 [152,4]	30.0 [762,0]	15.0 [381,0]	21.9 [555,8]	44.0 [1117,6]
LFM22*			6		81.9 [2079,6]	24.5 [623,2]	6.0 [152,4]	30.0 [762,0]	15.0 [381,0]	21.9 [555,8]	44.0 [1117,6]
			8		81.9 [2079,6]	24.5 [623,2]	6.0 [152,4]	30.0 [762,0]	15.0 [381,0]	21.9 [555,8]	44.0 [1117,6]
	31	42 [1067]	6		81.9 [2079,6]	24.5 [623,2]	6.0 [152,4]	36.0 [914,4]	15.0 [381,0]	24.9 [632,0]	50.0 [1270,0]
LFM31*			8	2080 Lbs 945 Kg	81.9 [2079,6]	24.5 [623,2]	6.0 [152,4]	36.0 [914,4]	15.0 [381,0]	24.9 [632,0]	50.0 [1270,0]
			10		81.9 [2079,6]	24.5 [623,2]	6.0 [152,4]	36.0 [914,4]	15.0 [381,0]	24.9 [632,0]	50.0 [1270,0]
	38	48 [1219]	8	2450 Lbs 1115 Kg	81.9 [2079,6]	24.5 [623,2]	6.0 [152,4]	42.0 [1066,8]	15.0 [381,0]	27.9 [708,2]	56.0 [1422,4]
LFM38*			10		81.9 [2079,6]	24.5 [623,2]	6.0 [152,4]	42.0 [1066,8]	15.0 [381,0]	27.9 [708,2]	56.0 [1422,4]
			12		81.9 [2079,6]	24.5 [623,2]	6.0 [152,4]	42.0 [1066,8]	15.0 [381,0]	27.9 [708,2]	56.0 [1422,4]

FILTRATION

www.hyprofiltration.com


(

(

(

LF INSTALLATION DRAWING

(

(