

HP8H/8N Series

MP Filtri HP0651, HP0652, HP0653

Hy-Pro G6 Dualglass

High Performance Filter Elements

Performance

Temperature: -45f to 225f, -43c to 107c (buna)

-20f to 250f, -29c to 120c (viton)

Element collapse HP8N = 450 psid (30 bar)

HP8H = 3000 psid (210 bar)

Media

G6 media pleat pack features our latest generation of graded density glass media that delivers required cleanliness while optimizing dirt capacity.

Dynamic Filter Efficiency

DFE rated elements perform true to rating even under demanding variable flow and vibration conditions. Today's industrial and mobile hydraulic circuits require elements that deliver specified cleanliness under all circumstances. Wire mesh supports the media to ensure against cyclical flow fatigue, temperature, and chemical resistance failures possible in filters with synthetic support mesh.

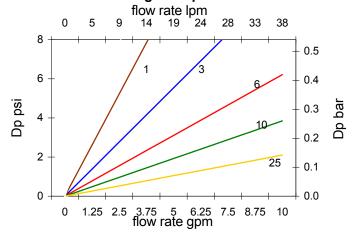
Tested to ISO quality standards

ISO 2941	Collapse and burst resistance
ISO 2942	Fabrication and Integrity test
ISO 2943	Material compatibility with fluids
ISO 3724	Flow fatigue characteristics
ISO 3968	Pressure drop vs. flow rate
ISO 16889	Multi-pass performance testing

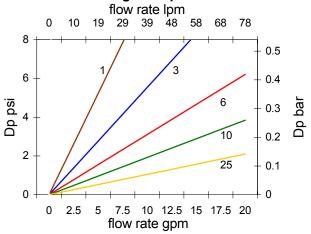
Interchange by series: (For complete part numbers and more cross reference consult the interchange guide)

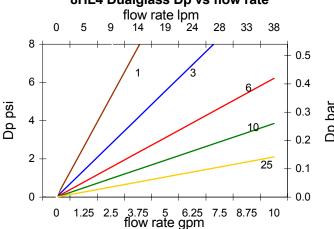
MP Filtri	Hy-Pro
HP0651	HP8_L4 series
HP0652	HP8_L6 series
HP0653	HP8_L8 series

*For Viton seals (where A in MP p/n is V) replace the B in Hy-Pro p/n with a V.


Water removal and Dynafuzz media also available. Call or consult the Hy-Pro on line interchange guide at www.filterelement.com

Fluid Compatibility


Petroleum based fluids, water glycols, polyol esters, phosphate esters, HWBF


8NL4 Dualglass Dp vs flow rate

8NL8 Dualglass Dp vs flow rate

8HL4 Dualglass Dp vs flow rate

8HL8 Dualglass Dp vs flow rate

Pressure Drop Calculation

Pressure drop curves based on oil viscosity of 150 SSU, and specific gravity = 0.9. Dp across element is proportionally related to viscosity and specific gravity. For new DP use the following conversion formula: **DP element = DP curve x Actual Viscosity/150 x Actual SG/0.9**

table 1 table 2 table 3 table 4 table 5

HP8 L -

table 1	
code	collapse
N	450 psid
Н	3000 psid

table 2	
code	length
4	single
6	double
8	triple

Hy-Pro filters are tested to the latest industry standard ISO16889 (replacing ISO4572) resulting in a new scale for defining particle sizes and determining a beta ratio.

New (ISO16889) vs Old (ISO4572) size comparison

Bx(c)=1000 (ISO16889)	2.5	5	7	12	22
Bx=200 (ISO4572)	<1	3	6	12	25

TB8H/8N-0402

table 3	
code	filtration rating
1	B2.5[c] = 1000 (B1 = 200)
3	B5[c] = 1000 (B3 = 200)
6	B7[c] = 1000 (B6 = 200)
10	B10[c] = 1000 (B10 = 200)
10W	10u nominal wire mesh
25	B22[c] = 1000 (B25 = 200)
	or nominal wire mesh
40	40u nominal wire mesh
60	74u nominal wire mesh
149	149u nominal wire mesh
250	250u nominal wire mesh

table 4	
code	Media
Α	G6 Dualglass
	w/water removal
М	G6 Dualglass
SF	Dynafuzz
W	wire mesh

seal	
Nitrile	
Fluoro	
EPR	
	Nitrile Fluoro

